LES SÉMINAIRES DE L’INMG

Epigenetic strategies : nucleosome remodeling, histone modifications and histone variants

Par
Stefan DIMITROV

(Invité par Laurent SCHAEFFER)

Institut Albert Bonniot
Centre de Recherche UGA – INSERM U1209 / CNRS UMR 5309
Grenoble - FRANCE

Mercredi 5 octobre 2016
11 heures

Salle Guillermond
Bât. L’Herbier
9, rue Raphaël DUBOIS
69100 Villeurbanne - Domaine Universitaire de La Doua
Chromatin impedes the binding of protein factors to the underlying DNA sequences. The cell uses three main "epigenetic tools" to overcome the chromatin barrier, namely, chromatin remodelers, histone variants and histone post-translational modifications. We will give specific examples of how either one of these "epigenetic tools" functions.

Chromatin remodelers are sophisticated nano-machines, which are able to alter histone-DNA interactions and to mobilize nucleosomes. Neither the mechanism of their action nor the conformation of the remodeled nucleosomes are, however, yet well understood. We have studied the mechanism of RSC-induced chromatin remodeling by using high resolution microscopy and state of the art biochemistry techniques. The data illustrates how RSC remolds the nucleosome in vitro and sheds light on its in vivo function.

The crystal structure of the CENP-A nucleosome was recently solved. Intriguingly, in contrast to the canonical nucleosome (where 147 bp of DNA are wrapped around the histone octamer), only the central 121 bp were visible, suggesting flexible CENP-A nucleosomal ends. Why the CENP-A nucleosome exhibits flexible DNA ends is totally unknown. Our data show that the flexible DNA ends of the CENP-A nucleosome are required for mitotic fidelity.

The Aurora family of oncogenic kinase consists of two major members, Aurora A and Aurora B. Both kinases exhibit very high homology. They show, however, quite distinct localization and function. Histone H3 is specifically phosphorylated, presumably by the oncogenic kinase Aurora B, at serine 10 at the onset of mitosis. Here we will present data on the distinct function of the two Aurora kinases and the mechanism of phosphorylation of histone H3 by Aurora B.

Selected publications (2010-2016)


