The endocytic machinery in healthy and diseased muscle

Par

Stéphane VASSILOPOULOS

(Invité par Laurent SCHAEFFER)

Myologie Centre de Recherche / Institut de Myologie
UMRS 974 UPMC-Inserm / FRE 3617 CNRS
G.H. Pitié-Salpétrieře
Paris - FRANCE

Vendredi 7 octobre 2016
14 heures

Amphithéâtre
CNRS Rhône Auvergne
2, Av. Albert Einstein
69100 Villeurbanne
Domaine Universitaire de La Doua
Costameres represent specialized focal adhesion sites of muscle fibres, located between the plasma membrane and sarcomeres, the contractile units of muscle. When disrupted, they directly contribute to the development of several distinct myopathies.

We have shown that the ubiquitous clathrin heavy chain (CHC), well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM), forms large plaques connected to α-actinin and actin filaments. Depletion of CHC leads to defective costamere formation and maintenance both in vitro and in vivo and induces sarcomere disorganization and a loss of contractile force due to the detachment of sarcomeres from the PM. At costameres, CHC is co-expressed with dynamin 2 (DNM2), another key protein of the intracellular membrane trafficking machinery which is mutated in autosomal dominant centronuclear myopathy (CNM). We analyzed the role of DNM2 and several actin binding proteins on clathrin plaque function at costameres in vitro by using either siRNA depletion combined to high resolution electron microscopy or in vivo by intravital microscopy. We also focused on the possible link between costamere and CNM pathophysiology. Using myoblasts from DNM2-mutated patients and using myoblasts and muscles from a knock-in mouse model of DNM2-related myopathy, we analyzed structure of costameres by biochemical and immunocytocchemical approaches, as well as ultrastructure.

Our results demonstrate a crucial role for the endocytic machinery and the cytoskeleton. Their contribution to the formation and maintenance of the contractile apparatus highlight an unconventional role for clathrin flat lattices in skeletal muscle which may be relevant to pathophysiology of several neuromuscular disorders.

Ref


